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In this work, the effect of wall interference on steady and oscillating airfoils in a subsonic wind tunnel is studied. A
variety of approaches including linear theory, compressible inviscid and viscous computations, and experimental
data are considered. Integral transform solutions of the linearized potential equations show an augmentation of the
lift magnitude for steady flows when the wall is close to the airfoil surface. For oscillating airfoils, lift augmentation is
accompanied by a significant change in the phase of the lift response. Idealized compressible Euler calculations are
seen to corroborate the linear theory under conditions that are sufficiently away from acoustic resonance. Further,
the theory compares well with compressible Reynolds-averaged Navier—Stokes calculations and experimental
measurements over a wide range of attached flows at subsonic Mach numbers. The present methodology can thus be
used to predict wall interference effects and also to help extrapolate linear and nonlinear (dynamic stall) wind tunnel

data to free-air conditions.

Nomenclature

c = chord length

H = wall distance (in terms of semichord)

h/c = wall distance (in terms of ¢)

k = reduced frequency, %

M = freestream Mach number

U = freestream velocity

w(x) = downwash distribution (normalized by U)

X = chordwise distance

o = angle of attack, deg

B = Prandtl-Glauert factor, v'1 — M?

Ap(§) pressure difference between top and bottom
(normalized by freestream dynamic pressure)

& = nondimensional distance along camber line

¢ phase angle between driving frequency and lift
response

10} = angular velocity of pitching

Introduction

YPICALLY, high Reynolds number experiments (of the order

of 10° [1,2]) on airfoils are conducted in wind tunnel test
sections that are not significantly larger than the model size. The
proximity of the test section walls to the airfoil surface can be
expected to affect the flowfield in a way that the measured forces
cannot be directly extrapolated to free-flight conditions. Even though
this is a relatively well-known fact, most computational fluid
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dynamics (CFD) simulations of wind tunnel experiments (for
instance, [3,4]) are performed without modeling the tunnel wall.

In a steady attached flow around an airfoil, the primary effect of the
wind tunnel wall is to present an effective blockage, thus resulting in
an augmentation of lift. However, unsteady compressible flow (such
as that corresponding to an oscillating airfoil) can be expected to be
more complicated because of the fact that acoustic disturbances
propagating from the airfoil surface reflect off the tunnel walls, and
the resulting interaction can significantly affect the magnitude and
phasing of the aerodynamic forces. For instance, Runyan and
Watkins [5] demonstrate the possibility of succeeding disturbances
reinforcing each other, causing an acoustic resonance. For a given
tunnel height, this phenomenon occurs at a particular frequency of
oscillation that is finite for all subsonic Mach numbers. Wind tunnel
tests [6] showed a sharp reduction in the lift magnitude near the
predicted frequency.

The broad objective of the present work is to characterize and
predict the effect of wind tunnel wall interference on steady and
oscillating airfoils. The following are the specific goals: 1) extensive
study of the effects of wind tunnel interference on the lift response on
an oscillating airfoil using linear theory, 2) assessment of the
accuracy and validity of linear theory, 3) assessment of Euler and
Reynolds-averaged Navier—Stokes (RANS) solvers in representing
interference effects, and 4) investigation of the flowfield using Euler
and RANS simulations.

Linear Theory

The problem of prediciting unsteady airloads on a thin airfoil has
been investigated by a number of researchers over the past century.
For the specific case of oscillating airfoils, major contributions were
made by Theodorsen [7] and Possio [8]. Theodorsen derived an
explicit expression for the force and moment on an oscillating flat
plate in incompressible flow and expressed it in terms of Bessel
functions. Possio obtained an integral equation relating the
downwash and pressure distribution for subsonic compressible flow,
which required a numerical solution. Whereas both of these
approaches are valid for flow in an infinite domain, Bland’s [9] work
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Fig. 1 Linear theory: Mach number corrected lift curve slope for
steady flow over flat plate with varying Mach number and tunnel height.

appears to be the first to account for the presence of wind tunnel walls
in subsonic compressible flow.

Based on an integral transform solution of the linearized full
potential equation, this theory can be used to compute the surface
pressure distribution Ap (and hence the forces), once the motion-
induced downwash w on the airfoil is known. The solution involves a
Fredholm integral equation of the first kind, given by

1
we) = [ K= 80 o m
where the kernel function is given by
ik 1+s .
K(x) = B 2 og x| + + sgn(x) K2e—ikx
4nx 4w 8

1 | x| ikH _( |x| K2 1 X
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p_— + (e # — l)csch Z,B—H] —m[ ( tanh—):|

ik 2 7|x|
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) |:(e 1) log tanh4 ]

where F' and F’ are functions (the latter being the derivative of the
former) that can be summed up as an asymptotic series. The solution
of this equation is obtained by collocation using a polynomial basis.
The convergence properties and implementation details can be found
in [10]. The method is very efficient in that only 6-10 collocation
points are required to achieve convergence.

If the camber line (including the angle of attack) can be
represented by the function y(x), then the downwash function (in an

©
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oscillating case) is given by
; d . .
w(x, 1) = w(x)e™ = P + ik |y(x)e™ )
X

It has to be mentioned that the preceding formulation reduces to well-
known forms such as the Prandtl-Glauert solution for steady
subsonic compressible flow and Theodorsen’s theory for unsteady
incompressible flow [7] under relevant simplifying assumptions.
Rather surprisingly, this theory appears to have received relatively
scant attention in the literature.

Figure 1 shows the effect of wall proximity on the lift curve slope
of a flat plate in subsonic flow. It becomes clear that for wall heights
<3c, significant lift augmentation can be expected. It is confirmed
that for large h/c, the results asymptote to Glauert’s result,
C;, = 27/ B. Other than the Glauert correction, a weak dependence
on Mach number is observed, except at very small i/ c.

Figure 2 shows the amplitude |C;,| and phase angle ¢ of the lift
response for a flat plate oscillating (about the quarter-chord point and
in incompressible flow) at different frequencies. As a measure of
consistency, the results were verified to accurately compare with
Theodorsen’s theory for i/c = oco. In addition, the distance of the
wind tunnel walls from the airfoil surface is also varied. If the airfoil
motion can be represented by o = o, cos(wr), the lift response is
given by C; (1) = a;|Cry| cos(¢ + wt). It is evident that while lift
augmentation occurs when the wall gets closer to the flat plate for a
given frequency, the magnitude of the lift is reduced for increasing
frequencies. In addition to the lift augmentation, the presence of the
wall is seen to significantly determine the phasing. For instance, at
k =0.175, the presence of the wall for 1.25 < h/c < 4 suggests a
phase lag, whereas the freestream value corresponds to a clear phase
lead. In general, the phase angle lags the forcing for small reduced
frequencies and then leads for larger reduced frequencies, but this
trend is delayed as the distance to the wind tunnel wall is smaller. It is
also seen that the effect of the wind tunnel wall on the deviation of the
phase angle (from free-air conditions) is larger for increasing
frequencies.

As expected, Fig. 3 confirms the fact that compressible flow is
much more complicated. As mentioned earlier, for particular
combinations of the reduced frequency and wall distances, acoustic
resonance between the oscillating (or driving frequency) and the
waves reflected off the wind tunnel wall drastically alters the lift
response. At such conditions, linear theory predicts infinite
amplification. These downwash independent modes will be termed
Runyan modes [5] and are related by

B 1
k, = MH(n—E), n=0,12... 3)

Wind tunnel tests [6] confirm the existence of this phenomenon;
however, damping in the form of nonlinearities and viscous effects
diminish the exaggerated effect predicted by linear theory.
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a) Amplitude of lift curve slope
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b) Phase angle of lift response

Fig. 2 Linear theory: lift slope and phase response for oscillating flat plate at M = 0 (incompressible flow).
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Fig. 3 Linear theory: lift slope and phase response for oscillating flat plate at M = 0.3 (subsonic compressible flow).

Numerical (CFD) Results

Computations are performed using a structured overset mesh
solver. The compressible inviscid or RANS equations are solved
using a high-order finite volume approach [11]. The inviscid terms
are computed using the fifth-order weighted essentially non-
oscillatory (WENO) [12] scheme with Roe’s flux difference splitting
[13]. The viscous terms are computed using fourth-order central
differencing. Time integration is performed using the implicit
second-order backwards difference scheme. The Spalart—Allmaras
turbulence model [14] is used as a RANS closure when viscous
results are sought. For the unsteady cases, dual time stepping is used
with an appropriate number of subiterations to achieve 2—3 orders of
magnitude of the L2 norm of the mean flow and turbulence model
residuals. Typically, the attached flow cases required around 500
time steps per cycle for time converged results (to within plotting
accuracy) and the dynamic stall calculation required around 1000
time steps per cycle. The dual time stepping is performed at a
constant pseudo-Courant—Friedrichs—Lewy (CFL) number of 10 for
the flow solver as well as the turbulence model.

A two-mesh system (as shown in Fig. 4) is used to discretize the
flow domain. A body fitted C-mesh is used near the airfoil surface
and this grid is overset inside a rectangular mesh that extends to the
wind tunnel walls and the inflow and outflow boundaries. The airfoil
mesh moves as a rigid body inside the static background mesh, thus
ensuring a good mesh quality at all simulation times. The
background mesh is hole-cut to blank out an extended region that
encloses the airfoil surface. Subsonic characteristic inflow and
outflow boundary conditions are specified at the left and right
boundaries of the background mesh. On the wall surfaces (in both the
background and airfoil meshes), density is extrapolated from the
interior of the domain and the pressure is obtained from the normal
momentum equation.

All the results presented in this work were verified to be grid- and
time-step-converged. The grid-converged inviscid calculations are
performed on a 201 x 61 (in the wraparound and normal directions,
respectively) airfoil mesh, whereas the viscous calculations use a
317 x 121 mesh. The background mesh is made such that square
cells of side 0.025¢ are used in the vicinity of the airfoil mesh. This
yields 40 cells per chord length. Therefore, wavelengths of the order
of 0.3¢ can be resolved satisfactorily by the numerical scheme. Note
that the use of 500 time steps per cycle ensures that the time step is
small enough to accurately represent the propagation of these waves.
A typical background mesh size for 2/c = 2.5 is 301 x 201 (in the
streamwise and normal directions, respectively).

Inviscid Computations

For verification and validation purposes, the linear theory results
are compared with inviscid computations on a NACA 0003 airfoil.
This airfoil section was chosen because it roughly approximates the
flat plate without singularities and acts a precursor for subsequent
validation with experimental data on oscillating airfoils.

Figure 5 summarizes steady inviscid computations of the flow
over a NACA 0003 airfoil. For each combination of M and i/ c, the
lift was computed for an angle of attack « = 1 deg (and multiplied
by 180/ 1) to obtain the lift curve slope. For selected cases, an angle
of attack sweep (from —5 < o < 5 deg) was performed to confirm
the linearity of the lift curve.

Figure 6 compares the computed lift response, for a sample
oscillating NACA 0003 airfoil case, with linear theory. The angle of
attack for these cases is given by o = lsin(wt). The differences
between the linear theory and CFD is observed to be within plotting
accuracy. Figure 7 and Table 1 summarize the unsteady cases by
comparing the magnitude and phasing of the first harmonic of the
resultant lift curve slope.

In these cases, aside from the linearity assumptions in the theory,
some differences can be expected from the geometric variations.

y/c

Wind tunnel mesh
Alrfoll mesh

|
-5 0 5 10 15

b) Overlap and hole cut regions

Fig. 4 Sample mesh system for inviscid NACA 0003 computations.
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Fig. 5 Comparison between theory (flat plate) and
computation (NACA 0003) for steady flow.

inviscid

However, the level of agreement confirms the validity of the theory
and also serves as a verification for the CFD computations.

Validity of Linear Theory Near Resonance Conditions

As observed in Fig. 6, the comparison between linear theory and
inviscid CFD prove to be good for the conditions that were evaluated.
The validity of the linear theory will now be examined at a higher
Mach number near resonance conditions. Figure 8 shows the
amplitude and phasing of the lift response at M =0.5. As a
representative case, i/c = 5.0 will be considered, and for this case,
acoustic resonance occurs near k = (0.25. Figure 9 compares the
linear theory with inviscid calculations and it is evident that near
resonance, the discrepancy in both the amplitude and phasing is
substantial. This can be attributed to the damping introduced by the
nonlinear interactions. Figure 10 shows the “perturbation” pressure
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Table 1 Comparison of first harmonic of lift response for NACA 0003
(inviscid computation) and flat plate (linear theory) at M = 0.3

h/C k ICLD( |Iheory ¢theory ICLDt ‘Compuled ¢Cumpuled
1.25 0 7.037 0 7.242 0
2.50 0 6.703 0 6.838 0
5.00 0 6.616 0 6.712 0
10.0 0 6.594 0 6.602 0
1.25 0.05 6.920 —1.937 7.087 —2.578
2.5 0.05 6.505 —3.463 6.623 —3.809
5.0 0.05 6.284 —4.824 6.463 —4.541
10.0 0.05 6.108 —5.383 6.347 —4.794
1.25 0.1 6.618 —2.936 6.737 —3.468
2.5 0.1 6.049 —4.825 6.159 —5.050
5.0 0.1 5.697 —5.439 5.926 —6.017
10.0 0.1 5.538 —4.791 5.749 —6.371
1.25 0.15 6.234 —2.479 6.316 —2.719
2.5 0.15 5.569 —3.576 5.668 —3.788
5.0 0.15 5.237 —2.847 5.394 —4.408
10.0 0.15 5.161 —2.103 5.199 —3.658
1.25 0.2 5.859 —-0.529 5.933 —0.383
2.5 0.2 5.187 —0.344 5.277 —0.583
5.0 0.2 4.939 1.164 4.996 —0.584
10.0 0.2 4.902 1.068 4.871 0.190

coefficient (instantaneous pressure with a subtract of the pressure
corresponding to steady flow at mean «) at a sample time. The
complicated interaction of a circular acoustic pulse (in the figure,
centered at {x, y} &~ {3, 0} and of radius ~3 with waves reflecting off
the wall) is evident. It has to be mentioned that the computed solution
may not be entirely physical because 2-D acoustic propagation is
essentially different compared to the 3-D problem.

Validations with Experimental Data

To validate the linear theory and the CFD methodology with
experiments, comparison with oscillating NACA 0012 data from the
U.S. Army Mobility Research and Development Laboratory
(AMRDL)-Ames 7 x 10 ft subsonic wind tunnel [1,2] is attempted.
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Fig. 6 Comparison of lift response for oscillating NACA 0003 (inviscid computation) and flat plate (linear theory) at M = 0.3, = 1sin(2kMt),k = 0.1:

a), b), ¢) vs time; d), e), f) vs o.
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Fig. 8 Linear theory: lift slope and phase response for oscillating flat plate at M = 0.5,k /c = 0.5.
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Fig. 9 Comparison of lift response for oscillating NACA 0003 (inviscid computation) and flat plate (linear theory) at M = 0.5, « = 1sin(2kMt).

A set of test cases are shown in Table 2. This set was chosen because
it represents an effective frequency sweep at attached flow
conditions. Figure 11 compares the linear theory and RANS
computations for the aforementioned cases. In these cases, even
though thickness effects can be expected to be more prominent than
in the NACA 0003 cases, the overall agreement of the linear theory
with experiments and computations is good. The computed pressure
distributions (for a sample case, case 2) are shown in Fig. 12 and the
level of agreement effectively validates the RANS solver.

Table 2 Experimental test cases for validation of oscillating NACA
0012 airfoil data with linear theory and RANS computations: & = 2kM

Case h/c k o, deg M Re Reference
1 25 001 495+ 5sin(wr) 03 3.93x10° [2]
-4 -2 0 2 4 6 2 25 01 495+ 5sin(wr) 03 3.93x10° 2]
X 3 125 0.15 6 + 65sin(wr) 0.1 25x10° [1]
Fig. 10 Contours of perturbation pressure coefficient for NACA 0003 4 125 024 6 + 6sin(wr) 0.1 2.5x10° [1]

atM = 0.5,k =0.25,¢/T = 0.6.



1688 DURAISAMY, MCCROSKEY, AND BAEDER

1.2 T T T T T T 1.4 i i T T T T
Expt
. E.Xm Th | |- - Linear Theory |
1k inear Theory 1 1.2 —— Computation
—— Computation
0.8f 1 T 1
0.6f 1 0.8r 1
5 -
&) o
0.4f 1 0.6f 1
0.2 1 0.4F d
or 1 0.2 4
02 L L L R R R 0 ¢ L L L R R
0—2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12
o o
a) Case 1 (k =0.01) b) Case 2 (k =0.1)
Expt Expt
1.2k - - - Linear Thgory | 1ok |- Linear Th(laory ]
—— Computation —— Computation
1r 1 1r 1
0.8f 1 08r 1
o _.
(&) (&)
0.61 1 0.6 1
0.4r 1 04 1
0.2r 1 0.2r 1
0 L 0 L L L L L L L
12 0 2 4 6 8 10 12
o
¢) Case 3 (k =0.15) d) Case 4 (k =0.24)

Fig. 11 Comparison of lift response for several NACA 0012 configurations. Refer to Table 2 for further details.
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Fig. 14 Lift response of SC1095 airfoil undergoing dynamic stall at
M = 0.302, k = 0.099.

Figure 13 further confirms the fact that inclusion of the wind
tunnel walls significantly affects the computed lift curve slope.
However, as expected from Fig. 3, the difference in phase angle for
this combination of M and & is not considerably different for /¢ =
2.5and h/c = oo.

Impact on Dynamic Stall Calculations

For practical implications of the aforementioned interference
effects (and also to validate the numerical algorithm under separated
flow conditions), a dynamic stall simulation is considered. The
experiment [2] corresponds to an SC1095 airfoil at M = 0.302,
Re =3.92 x 10°, k = 0.099, oscillating at an angle of attack given
by & = 9.78 + 9.9 sin(wr). The wind tunnel walls are at a distance of
2.5¢ from the airfoil surface. As seen from Fig. 14, inclusion of wind
tunnel walls in the computation significantly improves the prediction
of the lift response on the upstroke. Investigation of the flowfield data
showed that at the tunnel walls, the variation of the pressure
coefficient ranged between 0.3 and remained significant up to five
chords upstream and downstream of the airfoil.

Conclusions

The proximity of the wall has significant effects on the forces
acting on steady and oscillating airfoils in wind tunnels. In this work,
Bland’s [9] integral transform solution of the linearized compressible
potential equations was examined for steady and oscillating airfoils
over a wide range of tunnel heights and frequencies. Analysis of the
solutions suggest the following:
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Case 2: effect of wind tunnel wall.

1) For steady flow, there is significant lift augmentation (compared
to a freestream test) at wall distances approximately less than three
chords from the airfoil surface.

2) For unsteady flow, whereas the effect on the magnitude of the
lift curve slope is again significant for wall distances less than three
chords from the airfoil surface, the phasing is significantly affected at
all wall distances for compressible flow. The effect of the wind
tunnel wall on the deviation of the phase angle (from free-air
conditions) is, in general, larger for increasing frequencies. The lift
response is drastically altered near conditions corresponding to
acoustic resonance between the airfoil and wind tunnel walls.

The theoretical results were validated with compressible Euler
calculations. The level of agreement of the predicted lift response
with theory was found to be very high for conditions that are not near
the acoustic resonance. Linear theory and RANS calculations also
compare well with experimental data corresponding to subsonic high
Reynolds number attached flow at various oscillating frequencies.
For all the test cases, the importance of accounting for the wind
tunnel wall is clearly established.

The aforementioned tests confirm the validity of the linear theory
as a low-cost tool for interpreting oscillating airfoil wind tunnel data
and extrapolating the same to freestream conditions. In addition, the
RANS methodology also proves to be a reliable predictive means to
study unsteady compressible flows in the presence of interfering
wind tunnel walls.
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